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SUMMARY

Starting from the gas kinetic model, a new class of schemes for hyperbolic systems of conservation laws is
presented. The ¯ow solvers are based on the Boltzmann equations. The numerical discretization is based on the
upwind cell vertex ¯uctuation-splitting model. The method is truly multidimensional in the sense that the
splitting is independent of a particular normal direction; the geometry of the mesh does not in¯uence the
upwinding. Numerical results for inviscid ¯ow test cases are presented to indicate the robustness and accuracy of
the schemes. # 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluctuation-splitting space discretization schemes have been introduced and developed for the last

few years for scalar advection equations. Their extension to multidimensional non-linear transport

equations is non-trivial owing to the complex wave decompositions involved.1 Since the Euler

equations can be derived directly from the zeroth-order moments of the Boltzmann equations written

as free transport equations, one way to use these schemes for such non-linear conservation laws is the

kinetic approach. In this paper the kinetic approach is used to solve the compressible Euler equations

using the above-mentioned new schemes for unstructured triangular meshes. This allows us to extend

these schemes to the multidimensional case and gives conservative, stable, positive and entropy-

satisfying ®nite element schemes. This approach has been investigated by a number of authors for

®nite-volume-type schemes.2±6 However, for the case of `¯uctuation-splitting' schemes the

equilibrium state is considered to be a Maxwellian one and the triangulations must be deduced

from quadrilaterals.7 By simplifying this function, this can be extended to any kind of triangulation.8,9

However, the integrals involved limit the practical feasibility to equivalent ®rst-order schemes, which

nevertheless give remarkably good results. The development of these schemes in a truly compact

®nite element approach, maintaining the properties of positivity, stability and entropy preservation, is

presented here and extensions to second order are possible by simplifying the Maxwellian-type

distribution by Dirac ones. The tedious integrals that were necessary before become redundant and
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the resulting schemes maintain at least precision, entropy and stability. Three classes of ¯uctuation-

splitting schemes are considered, the so-called N-scheme, which in spite of its low spatial order (0�8)

is always positive and gives comparable results to the higher-order (1�6) so-called PSI scheme, and

another linear decomposition scheme which is non-positive, LDA. For PSI and LDA, only Dirac

distributions are used; for the N-scheme, comparisons of different approximate equilibrium

distributions are made.

For transonic and supersonic compressible ¯ows all the above schemes proved to give accurate

representations of several dif®cult ¯ow situations. The numerical results presented here consist of a

number of steady and unsteady shock±shock interaction and shock re¯ection test cases, such as the

supersonic scramjet inlet presented below, where the multiple shock re¯ections and geometry-

induced expansion fans are captured with high accuracy on a relatively coarse ®nite element

triangular unstructured mesh.

2. KINETIC APPROACH

The approach presented here is based on the dynamical theory of gases rather than the conservative

formulation of the Euler or Navier±Stokes equations. As is well known, these equations can be

derived from the Boltzmann equations, which can be written as conservation transport equations for

the molecular distribution function f(�x, t, �v, I), where �x denotes the relative position, ~v the microscopic

velocity and I the internal energy:

@t f � ~v � Hf � 1

E
qs� f �: �1�

The right-hand side represents the intermolecular collision operator and E is the Knudsen number.

The local translational equilibrium state is described by a scalar advection equation with an

identically zero collision integral for f given by a generalized Maxwellian distribution function f0:

@t f0 � ~v � Hf0 � 0: �2�
For totally elastic collisions we have conservation of density, momentum and total energy. The

conservation equations are thus the approximations obtained by taking the moments of the Boltzmann

equations with respect to the collision vector (1, ~v, k~vk2=2� Id)T, where d is a parameter related to the

thermodynamic state equation of the system.

Multiplying (1) by the collision vector (1, ~v, k~vk2=2� Id)T and integrating in the space spanned by

d~v and dI, we obtain the system of conservation laws:

@tW � div F�W � � 0 in O� R �; �3�
where W is the vector of conserved variables and F is the ¯ux, given by

W �
r
r~u
E

24 35; F�W � �
r~u

r~u
 ~u� t
�E � t�~u� q

24 35: �4�

By taking f to be the locally Maxwellian equilibrium distribution and by taking ®rst-order

moments of (1) with respect to the collision vector, the system (3) is reduced to the compressible

Euler equations with

t � rT IN � pIn; q � 0; E � r
2
j~uj2 � rT

gÿ 1
; 1 � g � 2:
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Kinetic schemes for the Euler equations are thus based upon moments of the discretised Boltzmann

equations by approaching (3) by a fractional step method. Several authors have employed this

approach with considerable success using ®nite volume schemes and a Maxwellian distribution

function (see e.g. References 2±6). For ®nite-element-type schemes this analysis has been restricted

to rectangular grids or triangular ones derived from quadrilaterals.7 By introducing velocity

distributions with compact support, this stage was advanced in References 3 and 4 by allowing the

same analysis on arbitrary grids.

This kinetic approach, written here in two dimensions, considers the free transport equation:

@tF � ~vH~xF � 0; t 2 �tn; tn�1�; �~x; ~v� 2 O� R2; �5�
with initial condition

F�x; ~x; t�jt�tn � Fn�x; ~v� for all �x; ~v� 2 O� R2:

For the initial condition of (3), (rn; ~un; T n), the function Fn is given by

Fn�x; ~v� � � f n�x; ~v�; gn�x; ~v��;
where the data f and g are of the form

f n�x; ~v� � rn�x�
Tn

w
~vÿ ~un�x�p

Tn�x�
� �

; gn�x; ~v� � rn�x�c ~vÿ ~un�x�p
T n�x�

� �
;

with a particular choice for w and c such that the free transport equations in f and g are related to (3)

via

W n �
rn

rn~un

En

0@ 1A � �
~v2R2

�V1�~v� f �~v� � V2g�~v�� d~v;

f�W n� �
rn~un

rn~un 
 ~un � pnIN

�En � pn�~un

0@ 1A � �
~v2R2

~v�V1�~v� f �~v� � V2g�~v�� d~v;

where the collision vectors V1(~v) and V2 are de®ned as

V1�~v� �
1

~v
j~vj2=2

0@ 1A; V2 �
0
~0
1

0@ 1A:
This is the key point: use recent advances in new multidimensional schemes1 for scalar advection

equations to solve the transport equation for F, (5), and in this way these schemes can be used to

solve the system of conservation laws, (3), via the kinetic approach.

Several choices of w and c are possible. In particular, the following have been studied in

References 2, 3 and 5±7:

w�~o� � 1

2p
exp ÿ j~oj

2

2

� �
; c�~o� � lw� ~o�;

where l is related to the ratio of speci®c heats g in the state equation via

l � 2ÿ g
gÿ 1

:
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These functions can be further approximated by replacing them by simpler compact support

distributions3,4,9 such as a circular (2D)=spherical (3D) one, i.e.

w� ~o� � 1

4p
1j~ojp2; c� ~o� � lw�~o�; �6�

or a rectangular=Heaviside shape, i.e.

w� ~o� � 1
12

1fjo1j�
p

3g1fjo2j�
p

3g; c�~o� � lw�~o�: �7�
Finally, the Dirac distribution, often used in probabilistic resolutions of the Boltzmann equations, can

also be employed:

w�~o� � 1
4

P
�i; j�2e

d~o��i; j�; c� ~o� � lw�~o�; �8�

where

e � f�1; 1�; �ÿ1; 1�; �1;ÿ1�; �ÿ1;ÿ1�g
and d ~o�~e denotes the Dirac distribution at ~e.

All the above functions w and c are non-negative functions satisfying�
~o2R2

1

oioj

 !
w� ~o�d ~o � 1

di; j

 !
;

�
~o2R2

c� ~o� d ~o � l; �9�

where di; j denotes the Kronecker symbol.

3. MULTIDIMENSIONAL WEIGHTED RESIDUAL SCHEMES

Upwind Riemann solvers with ®nite volume schemes for compressible ¯ows have been developed

and applied for the last 15 years on structured and unstructured meshes. However, they are often

based upon a monodimensional approach along the normal direction out of the computational cell.

This direction is explicitly part of the numerical ¯ux function, thus leading to grid dependence.

Multidimensional upwind schemes have also been developed during the last 5 years, but they often

involve highly complex wave decompositions. Since Boris and Book many years ago,10 who used

weighted residual schemes11 for compressible ¯ow solvers with ®nite elements, considerable

progress is now being made in this alternative multidimensional approach. The numerical residuals

per cell (element) are distributed by some scheme within the cell to the nodes, this distribution

de®ning the numerical ¯ux.

We assume that the computational domain O is a polygonal bounded domain in Rd , d� 2,3. Let

th be a triangulation of O. For the schemes studied here, the following notation is introduced.

The nodes of th are (i� 1, . . . , ns) and for each triangle T of th we will generically call (i, j, k) its

vertices. ~ni � ~n�i; T � is the inward normal of T opposite to the summit ~xi, with length j~xj ÿ ~xk j.
Then, considering the discretization of equations (3) on O, nodal values are updated as

W n�1
i � W n

i �
Dtn

i

jCij
P
fT=i2Tg

Fi
T ; �10�

where Fi
T is the contribution of the numerical ¯ux function (¯uctuation splitting) per element T to

node i. jCij denotes the volume of the topological dual cell around node i. W n
i represents the average

of W at time tn � nDtn
i within the cell. The exact ¯ux Ft in every triangle T, i.e.

FT �
�
@T

f�W �tn; x��~n dx; �11�
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where @T de®nes the surface of cell T with inward normal ~n, is replaced by a simple function

Fi
T � ÿ1

2
�fi

T �wn
i �~ni �fi

T �wn
j �~nj �fi

T �wn
k�~nk � �12�

called the residual distribution, where the functions fi
T are calculated such that Fi

T gives a

conservative scheme (10); that is, for every triangle T 2th,

Fi
T � Fj

T � Fk
T � FT �13�

for (i, j, k)Ðthe three nodes of triangle T.

We have used in this study a Boltzmann solver. The functions fi
T are given by

fi
T �W � �

r
T

�
~v2R2

~v V1�~v�bi
Tw

~vÿ ~up
T

� �
� V2

~bi
T Tc

~vÿ ~up
T

� �� �
d~v; �14�

where bi
T and ~bi

T are the coef®cient distributions associated with the transport equations for f and g

respectively and which, by conservativity, satisfy, for all T 2th,

bi
T � bj

T � bk
T � ~bj

T � ~bk
T � 1: �15�

4. FLUCTUATION-SPLITTING SCHEMES FOR FINITE ELEMENTS WITH KINETIC

APPROACH

Following References 1, 12 and 13, the ¯uctuation-splitting schemes on triangular ®nite element

meshes for the advection equations (5) are given by

Fn�1
i � Fn

i �
Dtn

jCij
P
fT=i2Tg

~fi
T ; �16�

with ~fi
T � �fi

T ;
~fi

T �; where

fi
T � ÿ1

2
bi

T~v � �~ni f n
i � ~nj f n

j � ~nk f n
k � � bi

TfT ;

~fi
T � ÿ1

2
~bi

T~v � �~nig
n
i � ~njg

n
j � ~nkgn

k � � ~bi
T

~fT

and bi
T and ~bi

T are the coef®cient distributions satisfying (15).

The scheme (16) is upwind in the sense that no ¯ux contribution is sent to upstream nodes, i.e.

bi
T � ~bi

T � 0 if ~v � ~ni < 0: �17�
Figure 1 shows the two possible situations that can occur. In case (a) there is only one in¯ow side

and the entire ¯uctuation ¯ux is sent to the unique downstream node i, (one-in¯ow case:

~v � ~ni > 0; ~v � ~nj < 0 ~v � ~nk < 0�, i.e.

bi
T � ~bi

T � 1; bj
T � ~bj

T � 0; bk
T � ~bk

T � 0: �18�
In case (b) the ¯uctuation ¯ux is split between the two nodes i and j, (two-in¯ow

case:~v � ~ni > 0; ~v � ~nj > 0; ~v � ~nk < 0�. The way in which these coef®cients are evaluated determines

the properties of the scheme, the most important of these being the positivity and linearity

preservation.

A linearity-preserving scheme is such that the distribution coef®cients bi
T are bounded. In this case,

when the cell residual FT tends to zero, the contributions (fa
T ; a � i; j; k) also tend to zero. This

property yields a second-order-accurate solution at steady state.
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4.1. N-scheme

This ®rst class of schemes was introduced in References 13 and 14. They are linear, positive and

entropy-preserving. For ®nite-difference-type structured grids they produce the narrowest stencil. The

scheme only sends a ¯ux contribution to downstream vertices. Thus the distribution coef®cients for

the two-in¯ow case (i, j) are given by

bi
T � bN;i

T �
fi

T

fT

; bj
T � bN; j

T �
fj

T

fT

;

where

fi
T � ÿ1

2
~v � ~ni� f n

i ÿ f n
k �; fj

T � ÿ1
2
~v � ~nj� f n

j ÿ f n
k �;

and for the one-in¯ow case we have the relation (18).

4.2. LDA-scheme

The LDA (low-diffusion A) scheme is a linearity-preserving second-order scheme which is not

positive. The distribution coef®cients are given by

bi
T � bLDA;i

T � max�0; ~v � ~ni�P
a�i; j;kmax�0; ~v � ~na�

: �19�

As this scheme is not positive, it can produce oscillations in high-gradient regions of the ¯ow.

4.3. PSI scheme

In order to combine both positivity and linearity preservation, one has to look for non-linear

schemes such as the PSI scheme, which is considered in Reference 13 to be the best-performing non-

linear ¯uctuation-splitting scheme and whose compact formula reads1,13

bi
T � bPSI;i

T � min�0;ÿbN;i
T �P

a�i; j;k

min�0;ÿbN;a
T �

; �20�

where bN is given by the N-scheme above.

Remark

Both the N-scheme and the PSI scheme are positive under the CFL condition

Dtn
i

P
fT=i2Tg

max�0; ~v � ~ni� � 2jCij:

Figure 1. Two different kinds of upwinded triangles
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4.4. Lax±Wendroff and SUPG schemes

The SUPG and Lax±Wendroff schemes are also linearity preserving but are not positive. In the

Lax±Wendroff scheme the distribution coef®cients are given by

bi
T � bLW;i

T � 1
3
� DtT
jT j ~v � ~ni;

where DtT is a constant cell time step and jT j denotes the volume of triangle T. The choice of the

nodal time step Dti and the cell time step DtT can be derived by generalization of a Fourier analysis

on a Cartesian grid.

The ¯uctuation-splitting interpretation of the SUPG scheme is straightforward:

bi
T � bSUPG;i

T � 1
3
� t
jT j ~v � ~ni;

where t � chT=j~vj (c is a constant and hT is a typical length scale of cell T ). As seen from the

expressions of bi
T � bLW;i

T and bi
T � bSUPG;i

T , the SUPG scheme is identical to the Lax±Wendroff

scheme for the choice t � 1
2
DtT for a constant convection vector ~v. The kinetic approach for these two

schemes is discussed in more detail in Reference 15.

4.5. Finite element kinetic schemes

The ®nite element schemes for (10) are obtained2,5,15 by multiplying (16) by the matrix vector

[V1,V2] and integrating over the velocity space d~v. Indeed, this follows from the identities

W n
i �

�
~v2r2

�V1�~v�f n
i �~v� � V2gn

i �~v�� d~v;

W n�1
i �

�
~v2r2

�V1�~v�f n�1
i �~v� � V2gn�1

i �~v�� d~v;

fi
T �W n

i � �
�
~v2r2

~v�V1�~v�bi
T f n

i �~v� � V2
~b

i

T gn
i �~v�� d~v:

The calculation of the ¯ux fi
T requires integrations�

E

bi
T vm

1 vn
2 dv; 0 � n� m � 3; �21�

over

E � f~v � ~ni � 0; ~v � ~nj � 0g \s �s depends on the support of w�: �22�

These integrals have to be calculated analytically. Here they have been simpli®ed by considering

only non-empty regions of intersection. All three possibilities were investigated and compared for the

three multidimensional schemes considered here, i.e. the N-scheme (®rst-order), the PSI (second-

order) scheme and the second-order (but non-positive) LDA scheme, while only the Dirac one was

used for the PSI and LDA schemes. The comparisons proved that in most cases the Dirac distribution

gave satisfactory results, improving the cost ef®ciency of such calculations as these intersection

integrals then become redundant.
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4.6. Positivity and entropy conditions

The kinetic schemes, whatever the choice of w and c, must always be consistent and preserve

positivity of density and pressure. The only choice of w and c which meets this requirement and

which yields a ®nite element scheme based on the kinetic approach preserving the entropy condition

and the maximum principle for speci®c entropy is given by the equilibrium functions3,15

w� ~o� � a�1ÿ j ~oj2=b�l�; c� ~o� � d�1ÿ j~oj2=b�l�1
� ;

b � 2� l; a � 1

2pb
� p=2

0
cos2l�1

; d � l

2pb
Pp=2

0 cos2l�3:

5. RESULTS

5.1. Shock re¯ection

The ®rst test case concerns a non-grid-aligned oblique shock re¯ection for the three above schemes

using the Dirac distribution in each case for the equilibrium functions. The Mach distributions are

given in Figure 2. This shows the multidimensionality of the underlying schemes and that the

precision is not affected by the use of the simpler Dirac function.

Taking a horizontal cut along the centreline and analysing the distribution of the entropy and Mach

variables along this line, only the second-order non-positive LDA scheme is seen to oscillate across

the shocks (Figure 3).

5.2. Ramp de¯ection test case

A good test case for testing properties of schemes for compressible ¯ows with discontinuities

shocks and contact discontinuities, is the ¯ow over an angular bump in a canal.16 In this case the N-

scheme is calculated with all three possibilities for the function w, i.e. circle, rectangle and Dirac

distributions. The only marked difference was within the entropy distribution, which is more

oscillatory for the Dirac distribution than for the circle or the rectangle. In the case of the circle the

entropy distribution for the N-scheme was equivalent to that of the PSI scheme calculated using the

Dirac choice. In all cases, i.e. LDA=Dirac, N-scheme=circle, rectangle, Dirac and PSI=Dirac, these

levels are very low and excellent discontinuity capturing was obtained (Figure 4).

Figure 2. Mach number distribution for shock re¯ection
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5.3. Scramjet inlet ¯ow

The last test case shows the calculation of a supersonic ¯ow, M1 �3�6, within a scramjet inlet on a

non-adapted and irregular grid, illustrated in Figures 5 and 6. The extremely complex ¯ow

interactions and shock re¯ections are well captured by the kinetic schemes. Taking a ®ne and highly

Figure 3. Entropy and Mach number distribution along mid-line for oblique shock re¯ection problem

Figure 4. M1 � 2 ¯ow over an angular bump

Figure 5. Solutions by kinetic PSI scheme for M1 � 3�6 scramjet inlet ¯ow
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adapted grid for a lower Mach number, M1� 3, where multiple shock re¯ections occur between the

components, the kinetic schemes prove to be highly accurate (Figure 7).

6. CONCLUSIONS

The extension of the kinetic approach for viscous (Navier±Stokes equations), reactive and also

turbulent ¯ows is now undertaken by several authors, but maintaining the complete Maxwellian for

Figure 7. Kinetic ¯uctuation-splitting schemes for supersonic scramjet intake at Mach 3: LDA scheme (top) and N-scheme
(centre). Entropy contours for N-scheme (bottom right) show entropy and linearity preservation. The mesh is a highly adapted

one (bottom left)

Figure 6. Iso-Mach lines by kinetic N-scheme for M1 � 3�6 scramjet inlet ¯ow (left) and corresponding coarse mesh (right)
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the equilibrium functions in order to be able to rederive the equations. The possibility of using the

approach developed here for the inviscid part and maintaining the other terms as source terms

simpli®es the complex integrals involved. The extension to other kinds of elements (quadrilaterals,

prisms, hexahedra) is also possible. The combination of the kinetic approach with ¯uctuation splitting

gives us very compact ®nite element schemes which yield robust results at least for supersonic and

even for transonic ¯ows. The schemes are not well adapted to subsonic ¯ows, however, and their

modi®cation to handle such zones is now underway.
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